Analysis of the Robustness of Degree Centrality against Random Errors in Graphs

نویسندگان

  • Sho Tsugawa
  • Hiroyuki Ohsaki
چکیده

Research on network analysis, which is used to analyze large-scale and complex networks such as social networks, protein networks, and brain function networks, has been actively pursued. Typically, the networks used for network analyses will contain multiple errors because it is not easy to accurately and completely identify the nodes to be analyzed and the appropriate relationships among them. In this paper, we analyze the robustness of centrality measure, which is widely used in network analyses, against missing nodes, missing links, and false links. We focus on the stability of node rankings based on degree centrality, and derive Topm and Overlapm, which evaluate the robustness of node rankings. Through extensive simulations, we show the validity of our analysis, and suggest that our model can be used to analyze the robustness of not only degree centrality but also other types of centrality measures. Moreover, by using our analytical models, we examine the robustness of degree centrality against random errors in graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative analysis of organizational processes by the use of the social network concepts

This study presents a comparative analysis of redesigned models of organizational processes by making use of social network concepts. After doing re-engineering of organizational processes which had been conducted in the headquarters of Mazandaran Province Education Department, different methods were used which included the alpha algorithm, alpha⁺, genetics and heuristics. Every one of these me...

متن کامل

Robustness envelopes of networks

We study the robustness of networks under node removal, considering random node failure, as well as targeted node attacks based on network centrality measures. Whilst both of these have been studied in the literature, existing approaches tend to study random failure in terms of average-case behavior, giving no idea of how badly network performance can degrade purely by chance. Instead of consid...

متن کامل

Robustness of Network Measures to Link Errors

In various applications involving complex networks, network measures are employed to assess the relative importance of network nodes. However, the robustness of such measures in the presence of link inaccuracies has not been well characterized. Here we present two simple stochastic models of false and missing links and study the effect of link errors on three commonly used node centrality measu...

متن کامل

Further Results on Betweenness Centrality of Graphs

Betweenness centrality is a distance-based invariant of graphs. In this paper, we use lexicographic product to compute betweenness centrality of some important classes of graphs. Finally, we pose some open problems related to this topic.

متن کامل

Robustness in clustering-based weighted inter-connected networks

We study the robustness of symmetrically coupled and clustering-based weighted heterogeneous inter-connected networks with respect to load-failure-induced cascades. This is done under the assumption that the flow dynamics are governed by global redistribution of loads based on weighted betweenness centrality. Our results indicate that no weighting bias should be assigned to inter-links when cal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015